Gas Turbine Systems for the 21st Century

1999 IGTI TurboExpo Indianapolis, IN

Abbie W. Layne DOE-FETC

Patricia Hoffman

DOE-Office of Energy Efficiency and Renewable Energy

Announced Total Capacity (MW) Additions by NERC Region

Potential Need for New Capacity

Objective: ATS Program

By 2000 develop ATS for utility and industrial applications that are:

Ultra-high efficiency: >60% for utility scale systems

15% improvement for industrial

system

Super-clean: NOx <10 ppm

Cost of electricity 10% lower

Fuel flexible: Gas primary focus

Leapfrog in Turbine Performance

The Advanced Turbine System Program Participants

A Consortium of Universities, National Laboratories, U.S. Government, and Private Industry in 37 U.S. States

The ATS Program Today

Concept Development (Phase II)

Technology Readiness Testing (Phase III)

A Caterpillar Company

Solar[®]Turbines

A Caterpillar Company

Manufacturer
Full-Scale Testing/
Performance
Validation

Industrial

Utility

Industry/University Consortium

FETC

Materials

Coal & Biomass

Technology Base Research

General Electric Company Turbine System Development and Testing

- Completed full scale testing of 9H(50Hz)ATS, Greenville SC
- Complete 7H(60Hz) ATS testing in 2000,
 Greenville SC
- Conduct precommercial demonstration of 7H ATS in 2001

General Electric Company Validation and Testing Program

- Full pressure combustion system at GE High Pressure Test Facility, Ohio
- Sub-scale compressor testing- GE Aircraft-, Lynn MA
- Steam cooled nozzle at GE High Pressure Test Facility, Ohio

Siemens-Westinghouse Power Corporation Turbine System Development and Testing

- Continue field testing of catalytic combustion and steam cooled systems on 501G
- Develop steam cooled vanes and test on 501GS power plant in 2001
- Manufacture 501 ATS and ship to customer site in 2002
- Conduct pre-commercial demonstration on 501ATS in 2002

Siemens-Westinghouse Power Corporation Validation and Testing Program

- Ohio State University
 Aerodynamic
 development testing on
 1/3 scale model rig
- Catalytic combustion field testing on existing turbine
- Full scale steam cooled vane testing at Arnold Airforce Base

Manufacturing Materials

Oak Ridge National Laboratory-FETC
Projects with: GE-PCC Airfoils, Siemens-Westinghouse, Howmet-GE-Solar

- Utility scale single crystal blades-reduced sulfur/no grain defects
- New core materials and processes, NDE
- Grain orientation control
- New projects cost reduction; increased yield rates

Solar Turbines Technology R&D and Demonstration Program

- Mercury 50- 1st engine in production
- demonstration site is Rochelle Foods/Rochelle Municipal Utilities
- 40% + efficiency, single digit emissions
- 4.3 MW output

Allison Engine Company

Technology R&D Program

- Focus on advanced technology to meet ATS development goals
- ceramic vanes
- low emissions combustion
- technology to advance current engines to ATS goal vs. new engine development

Ceramic Stationary Gas Turbine Developments-ARCO Western Energy

- 4000 hours of ceramic blades
- CFCC combustion liner testing for >5000 hours
- First stage nozzle SN88 installed
- total testing time accumulated 4000 hours

Industry/University Consortium

Industry/ University Consortium-South Carolina Institute for Energy Studies

- A consortium of 95 U.S. universities in 37 states
- 51 ongoing projects with universities
- Topical Areas Heat Transfer, Aerodynamics, Combustion, Materials
- Workshops, Internships, Sabaticals

Next Generation Turbine and Engine Systems

Fuel Cell Hybrid Systems(engines and turbines)

- High efficiency, low emissions
- Distributed generation
- Long Term Vision 21 systems

Flexible Gas Turbine Systems

- Flexibility operation, fuel, modularity
- Efficiency improvements for existing fleet of power plants(coal, gas, oil)

Next Generation Turbine and Engine Systems

Vision 21-High Efficiency Engines and Turbines

- Advanced turbine cycles
- Ultra high temperature, pressure
- Reheat and/or inter-cooling Hydrogen/CO2 turbines

Advanced Reciprocating Engine Systems

- Distributed Power
- Ultra high efficiency
- Lowest emissions technology
- Natural Gas fueled

Rationale for Vision 21

- Removes environmental barriers to fossil fuel use
- Keeps electricity costs affordable
- Produces useful coproducts, e.g. liquid transportation fuels, at competitive prices
- Continues U.S. leadership role in clean energy technology
- Provides the most certain route to achieving our energy, environmental, and economic objectives

Vision 21 Goals

- Develop advanced technology modules for a new fleet of 21st century energy plants tailored to market demand:
 - efficiency (to electricity)
 - > 60 % on coal; > 75% on gas
 - overall thermal efficiency of 85 90%
 - near zero pollutant emissions
 - lower cost of electricity and fuels than today
 - cost effective management of carbon emissions
- Establish mechanisms for deploying these advanced technologies, including industry and government partnerships

Fossil-Based Power Systems Efficiencies

- Conventional new power plants operate at 35-37% efficiency
- CCT program has demonstrated plants with 38-40% effic.
- "Nth" of a kind CCT units will improve to 45-50% efficiency
- Vision 21 plantscapable of 60-65%efficiency on coal,75% on gas, 85% incoproduction

Next Generation System Goals by year 2010 System Size- 30-150MW

Improved Design Efficiency 45-50%

Cost of Electricity 15-20% below market

Service life No greater than ATS

Reduced carbon emissions Retrofitable

Market Penetration 25% of 2010 market

Dispatch flexibility 400 starts per year

Nox emissions Meet an

Reduce O&M costs

Reduce capital costs

Meet any 2010 requirement

15% reduction from

comparable product

15% reduction from

comparable product

Next Generation System Goals by year 2010 System Size- 30-150MW

Improved Design Efficiency 45-50%

Cost of Electricity 15-20% below market

Service Life No greater than ATS

Reduced Carbon Emissions Retrofitable

Market Penetration 25% of 2010 market

Dispatch Flexibility 400 starts per year

NOx Emissions Meet any 2010 requirement

Reduce O&M Costs 15% reduction from comparable product

Reduce Capital Costs 15% reduction from

comparable product

Vision 21 Fuel Cell/GT Cycle

Plant Performance Summary

Gasifier	Destec
Coal Input to Gasifier, lb/hr	256,142
Thermal Input, MW _t	875.8
HP SOFC Module, MW, dc/ac	189.4/182.8
LP SOFC Module, MW, dc/ac	121.4/117.2
Gas Turbine, MW	133.7
Steam Turbine, MW	118.0
Fuel Expander, MW	9.6
Gross Power, MW	561.3
Auxiliary Power MW	40.4
Net Power, MW	520.9
Efficiency, % HHV	59.5

Next Generation Systems Will...

- Build on success of ATS program
- Result in significant air emissions reductions
- Accelerate the overall efficiency increase of the existing and new power generation fleets in the U.S.(coal,oil,gas)
- Develop an effective pathway to Vision 21 systems

